Виды, устройство и принцип работы дисковых тормозов

Виды, устройство и принцип работы дисковых тормозов

Дисковые гидравлические тормоза являются одной из разновидностей тормозных механизмов фрикционного типа. Их вращающаяся часть представлена тормозным диском, а неподвижная – суппортом с тормозными колодками. Несмотря на достаточно распространенное применение тормозов барабанного типа, дисковые тормоза все же приобрели наибольшую популярность. Разберемся в устройстве дискового тормоза, а также узнаем отличия между двумя тормозными механизмами.

Устройство дисковых тормозов

Конструкция дискового тормоза следующая:

Суппорт, представляющий собой чугунный или алюминиевый корпус (в виде скобы), закреплен на поворотном кулаке. Конструкция суппорта позволяет ему перемещаться по направляющим в горизонтальной плоскости относительно тормозного диска (в случае механизма с плавающей скобой). В корпусе суппорта размещены поршни, которые при торможении прижимают тормозные колодки к диску.

Рабочий тормозной цилиндр выполнен непосредственно в корпусе суппорта, внутри него находится поршень с уплотнительной манжетой. Для удаления скопившегося воздуха при прокачке тормозов на корпусе установлен штуцер.

Тормозные колодки, представляющие собой металлические пластины с закрепленными фрикционными накладками, устанавливаются в корпус суппорта по обеим сторонам тормозного диска.

Вращающийся тормозной диск устанавливается на ступицу колеса. Крепление тормозного диска к ступице осуществляется при помощи болтов.

Виды дисковых тормозных механизмов

Дисковые тормоза делятся на две большие группы по типу применяемого суппорта (скобы):

В первом варианте скоба имеет возможность перемещаться по направляющим и имеет один поршень. Во втором случае скоба фиксирована и содержит два поршня, установленные по разные стороны от тормозного диска. Тормозные механизмы с фиксированной скобой способны создавать большее усилие прижатия колодки к диску и, соответственно, большую тормозную силу. Однако и стоимость их выше, чем у тормозов с плавающей скобой. Поэтому данные тормозные механизмы применяются, в основном, на мощных автомобилях, (с использованием нескольких пар поршней).

Принцип работы дисковых тормозов

plavayushaya skoba

Дисковый тормозной механизм, как и любой другой тормоз, предназначен для изменения скорости движения автомобиля.

Пошаговая схема работы дисковых тормозов:

  1. При нажатии водителем на педаль тормоза, ГТЦ создает давление в тормозных трубках.
  2. Для механизма с фиксированной скобой: давление жидкости воздействует на поршни рабочих тормозных цилиндров с обоих сторон тормозного диска, которые, в свою очередь, прижимают к нему колодки. Для механизма с плавающей скобой: давление жидкости воздействует на поршень и корпус суппорта одновременно, заставляя последний перемещаться и прижимать колодку к диску с другой стороны.
  3. Диск, зажатый между двумя колодками, уменьшает скорость за счет силы трения. А это, в свою очередь, приводит к торможению автомобиля.
  4. После того, как водитель отпустит педаль тормоза, давление пропадает. Поршень возвращается в исходное положение за счет упругих свойств уплотнительной манжеты, а колодки отводятся с помощью небольшой вибрации диска в процессе движения.

Виды тормозных дисков

По материалу изготовления тормозные диски подразделяются на:

Чаще всего тормозные диски изготовлены из чугуна, который имеет хорошие фрикционные свойства и невысокую стоимость производства. Износ тормозных дисков из чугуна не велик. С другой стороны, при регулярном интенсивном торможении, вызывающем повышение температуры, возможно коробление чугунного диска, а при попадании на него воды – покрытие трещинами. Помимо этого, чугун достаточно тяжелый материал, а после длительной стоянки может покрываться ржавчиной.

Известны диски и из нержавейки, которая не так чувствительна к перепадам температур, но обладает более слабыми фрикционными свойствами, чем чугун.

Тормозной диск вентилируемой конструкции

Карбоновые диски отличаются меньшим весом, по сравнению с чугунными. Также они имеют более высокий коэффициент трения и рабочий диапазон. Однако по своей стоимости такие диски могут конкурировать со стоимостью автомобиля малого класса. Да и для нормальной работы необходим их предварительный прогрев.

Керамические тормоза не могут сравниться с карбоном по показателю коэффициента трения, но имеют ряд своих преимуществ:

  • устойчивость к высокой температуре;
  • стойкость к износу и коррозии;
  • высокая прочность;
  • небольшая удельная масса;
  • долговечность.

Есть у керамики и свои минусы:

  • плохая работа керамики при низких температурах;
  • скрип при работе;
  • высокая стоимость.

Тормозные диски можно подразделить и на:

  1. Вентилируемые;
  2. Перфорированные.

Первые состоят из двух пластин с полостями между ними. Это сделано для лучшего отвода тепла от дисков, средняя рабочая температура которых составляет 200-300 градусов. Вторые имеют перфорацию/насечки по поверхности диска. Перфорация или насечки предназначены для отвода продуктов износа тормозных колодок и обеспечения постоянного коэффициента трения.

Виды тормозных колодок

Колодки тормозные безасбестовые

Тормозные колодки, в зависимости от материала фрикционных накладок, подразделяются на следующие виды:

  • асбестовые;
  • безасбестовые;
  • органические.

Первые очень вредны для организма, поэтому чтобы поменять такие колодки, нужно соблюдать все меры безопасности.

В безасбестовых колодках роль армирующего компонента могут выполнять стальная вата, медная стружка и другие элементы. Стоимость и качество колодок будут зависеть от их составляющих элементов.

Наилучшими тормозными свойствами обладают колодки, сделанные на основе органических волокон, но и стоимость их будет высока.

Обслуживание тормозных дисков и колодок

Износ и замена дисков

Износ тормозных дисков напрямую связан со стилем вождения автомобилиста. Степень износа определяется не только километражем, но и ездой по плохим дорогам. Также на степень износа тормозных дисков влияет их качество.

Минимально допустимая толщина тормозного диска зависит от марки и модели транспортного средства.

Среднее значение минимально допустимой толщины диска передних тормозов – 22-25 мм, задних – 7-10 мм. Это зависит от веса и мощности автомобиля.

Основными факторами, указывающими на то, что передние или задние тормозные диски необходимо менять, являются:

  • биение дисков при торможении;
  • механические повреждения;
  • увеличение тормозного пути;
  • снижение уровня рабочей жидкости.

Износ и замена колодок

Износ тормозных колодок, прежде всего, зависит от качества фрикционного материала. Немаловажную роль играет и стиль вождения. Чем интенсивнее будет торможение, тем сильнее износ.

Читать статью  Тюнинг тормозов: как, зачем и кому это надо

Передние колодки изнашиваются быстрее задних за счет того, что при торможении они испытывают основную нагрузку. При замене колодок лучше менять их одновременно на обоих колесах, будь-то задние или передние.

Неравномерно могут изнашиваться и колодки, установленные на одну ось. Это зависит от исправности рабочих цилиндров. Если последние неисправны, то они сдавливают колодки неравномерно. Разница в толщине накладок в 1,5-2 мм может говорить о неравномерном износе колодок.

Существует несколько способов, позволяющих понять, нужно ли менять тормозные колодки:

  1. Визуальный, основанный на проверке толщины фрикционной накладки. На износ указывает толщина накладки в 2-3 мм.
  2. Механический, при котором колодки оснащаются специальными металлическими пластинками. Последние по мере истирания накладок начинают соприкасаться с тормозными дисками, из-за чего скрипят дисковые тормоза. Причиной скрипа тормозов является истирание накладки до 2-2,5 мм.
  3. Электронный, при котором используются колодки с датчиком износа. Как только фрикционная накладка сотрется до датчика, его сердечник соприкоснется с тормозным диском, электрическая цепь замкнется и загорится индикатор на приборной панели.

Плюсы и минусы дисковых тормозов в сравнении с барабанными

Дисковые тормоза имеют ряд преимуществ перед барабанными. Их плюсы заключаются в следующем:

  • стабильная работа при попадании воды и загрязнении;
  • стабильная работа при повышении температуры;
  • эффективное охлаждение;
  • малые размеры и вес;
  • простота обслуживания.

К основным недостаткам дисковых тормозов в сравнении с барабанными можно отнести:

Как работает тормозной диск и чем он лучше барабана: разбираемся вместе с Ferodo

Злые языки людей недалеких или просто медлительных быстро окрестили «тормозами». И, надо сказать, очень зря. Не только с точки зрения этики, но с точки зрения техники: тормоз – штука сложная, умная и очень быстрая. Конечно, в начале своего развития тормоза действительно были примитивными, малоэффективными и не очень надежными, но за сотню лет своей истории они сильно изменились.

Немного истории ​

Необходимость в тормозах появилась практически сразу после изобретения колеса, однако предки пару тысяч лет назад не стали торопить события и долго ездили на колесницах без тормозов в нашем привычном понимании. Однако к появлению карет тормоза уже поспели: это были механизмы, воздействующие непосредственно на колесо. Колодка, прижимаемая рычагом к внешней поверхности колеса, не могла эффективно остановить конный экипаж, но помочь лошадям была вполне способна. Но тут изобрели резиновые шины, и механизм с прижимом колодки к колесу ушел на пенсию. По крайней мере, в дорожном транспорте: сегодня механизмы с внешним прижимом успешно работают на железной дороге, хотя и там альтернатив им хватает. На обычных же дорогах кареты обзавелись ленточными тормозами: барабан на оси останавливался тормозной лентой, натягиваемой рычагом. Однако эффективность такой схемы тоже быстро была признана недостаточной, так что инженеры продолжили работать над изобретением новых механизмов.

Результатом этой работы стали два фундаментальных механизма, которые работают в автомобилях по сей день: барабанный и дисковый тормоз. Появились они практически одновременно, в самом начале 20 века, однако на первых порах барабанные механизмы захватили лидерство. Дело было не только в авторитете Вильгельма Майбаха, который установил на изобретенный им автомобиль барабанные тормоза, и Луи Рено, который запатентовал конструкцию с полукруглыми колодками. Барабанные тормоза были проще, а разработка фрикционных материалов способствовала их популяризации. Ключевым этапом в развитии фрикционных материалов стало создание тормозных накладок на основе асбеста и фенолформальдегидных смол, и сделала это в 1902 году компания Ferodo. В общем, начало века стало по-настоящему отправной точкой в развитии тормозных систем.

Однако дисковым механизмам потребовалось время, чтобы догнать барабаны и стать популярными. На ранних этапах у них было больше проблем, чем преимуществ: не было подходящего материала для изготовления дисков, в отсутствие усилителей система с механическим приводом требовала большего усилия по сравнению с барабанной, и даже гидравлический привод не решил вопрос из-за отсутствия нормальной тормозной жидкости. В общем, вопросов было больше, чем ответов, поэтому поначалу применение дисковых тормозов было эпизодическим. Одним из пионеров их применения был Уильям Ланчестер, но и он на тот момент не смог сделать дисковые механизмы конкурентным преимуществом своих машин. К примеру, на автомобилях Lanchester в начале 20 века диски из-за ограниченного выбора материалов были бронзовыми, что не способствовало их износостойкости. Однако полученный им патент все же стимулировал не только его самого к продолжению работы над совершенствованием дисковых тормозов.

Реальное развитие дисковая схема получила спустя еще 25-30 лет. К тому моменту был отработан гидравлический привод, а для снижения усилия на педали до приемлемого был внедрен вакуумный усилитель. Правда, в 30-е годы вакуумный усилитель в основном внедрялся на американские машины с барабанными тормозами, поскольку те все еще были дешевле и проще в производстве. Однако грядущий переход от барабанов к дискам уже был осязаем и неизбежен. Правда, в потребительском сегменте его сильно задержала Вторая мировая война. В военное время дисковым тормозам, разумеется, тоже уделяли внимание, однако они применялись и совершенствовались на танках и самолетах, а не на легковых машинах. Ну а после войны, на рубеже 40-х и 50-х, такие механизмы начали впервые появляться и на серийных автомобилях.

Разумеется, развитие дисковых тормозов сопровождалось совершенствованием конструкции и материалов. Помимо вакуумных усилителей и более эффективной тормозной жидкости, которая не закипала при торможении, важным этапом был переход к чугуну в качестве материала изготовления тормозных дисков. Причем серый чугун стал настолько эффективным решением, что применяется и поныне в подавляющем большинстве автомобилей. Чугун, правда, не решил полностью старые проблемы. Если охлаждение удалось улучшить за счет отливки вентилируемых тормозных дисков, то коррозия, пусть и внешняя, осталась верным спутником дисковых тормозов. О коррозии мы, впрочем, еще поговорим – а пока перейдем от древней истории к современной и вспомним, как эффективность дисковых тормозов выросла в последние десятилетия.

От чего зависит эффективность дисковых тормозов?

После получения практически идеального рецепта из нормальных чугунных дисков, качественных колодок и стойкой к перегревам тормозной жидкости на основе полиэтиленгликоля и его эфиров, развитие дисковых тормозных систем пошло в основном по экстенсивному пути. Переход к вентилируемым дискам состоялся быстро, ведь охлаждение было одной из ключевых задач повышения эффективности тормозов. А вот дальше начался поиск идеального баланса между диаметром тормозного диска, его конструкцией, материалом его изготовления и устройством тормозного механизма. Ведь с учетом того, что чугунный диск весьма прочен, отлично держит нагрузки и хорошо рассеивает тепло, на него можно и нужно хорошо давить. И здесь на сцену вышли многопоршневые конструкции. Тут все тоже несложно: если базовый тормозной механизм с плавающей скобой предусматривает наличие всего одного поршня, который давит на диск и прижимает к нему колодки с обеих сторон, то увеличение числа поршней и, соответственно, площади колодок позволяет повысить эффективность торможения без значительного увеличения диаметра самого диска. А это условие куда важнее, чем может показаться: ведь чугунный диск немало весит, так что повышение эффективности тормозов исключительно за счет увеличения площади диска – путь практически тупиковый из-за неоправданного роста неподрессоренных масс.

Читать статью  Смазка при замене тормозных колодок

В борьбе за неподрессоренные массы родились не только многопоршневые механизмы, но и составные диски. Ведь тормозной диск фактически состоит из двух частей: ротора, на который давят колодки, и центральной части, которая крепится к ступице. При этом работа по созданию тормозного усилия ложится главным образом на ротор, да и охлаждать нужно именно его. А вот на материале центральной части можно и нужно сэкономить килограмм-другой. В этом, собственно, и состоит суть составных дисков, в которых центральная часть выполнена из более легкого материала вроде алюминиевого сплава, а ротор, прикрепленный к ней винтами или заклепками, – из традиционного чугуна.

Следующим шагом здесь стала замена чугуна на более легкие материалы, такие как углеродное волокно и керамика. Казалось бы, вот он – новый прорыв, ведь карбон-керамические тормоза можно делать сколь угодно большими из-за их небольшой массы, а их износостойкость и термостойкость лишь укрепляют веру в прогресс. Однако на практике оказалось, что диски из углеродного композита хороши лишь при экстремальных нагрузках, когда рабочие температуры переваливают за тысячу градусов. В гражданских же условиях «холодные» тормоза работают гораздо менее эффективно, и в основном именно эта зависимость эффективности от температуры ограничивает их применение на массовых машинах.

Таким образом, главным материалом тормозных дисков потребительского уровня остается высокопрочный чугун с шаровидным графитом, а основной фокус делается на качестве изготовления и эффективности охлаждения. Важными в этих условиях становятся технологии производства: качество сырья и литья, чистовая обработка поверхностей, а также отработанная процедура стендового и практического тестирования для контроля качества. Все это доступно крупным производителям тормозных компонентов с большим опытом и историей производства – таким, как Ferodo. Именно Ferodo, как мы помним, более века назад дала толчок к развитию тормозных систем своими разработками в области фрикционных материалов. А сегодня продукция Ferodo является частью обширного ассортимента, предлагаемого подразделением DRiV корпорации Tenneco. Компания выпускает полный ассортимент тормозных компонентов, включая диски, колодки, суппорты, гидроцилиндры и шланги тормозной системы, тормозные жидкости и многое другое.

А теперь на секундочку вернемся к коррозии, о которой мы говорили выше. Для чугунных дисков окисление – проблема все же не эксплуатационная, а эстетическая: чтобы чугунный диск съела ржавчина, потребуется не один десяток лет, а вот поверхностная коррозия появляется на нем уже спустя несколько месяцев, особенно в условиях агрессивной среды вроде дорожной химии. И у Ferodo есть решение этого эстетического вопроса: диски с технологией Coat+, имеющие цинк-алюминиевое гальваническое покрытие для защиты диска от коррозии. Эта технология надежно защищает от коррозии не только ступичную часть диска, но и внутренние каналы охлаждения, обеспечивая требуемую эффективность отвода тепла при торможении. То есть жизнь владельцев красивых машин, которые уделяют внимание мелочам и не любят видимые внешние дефекты, становится немного проще: диски с технологией Coat+ сохраняют свой изначальный внешний вид долгие годы – при условии правильной эксплуатации и, конечно же, ухода.

Заключение

Завершая разговор о тормозах, обычно говорят об их важности, о том, что экономить на них, как и на шинах, нельзя, а также о том, что тормоза – это главное условие безопасности. Хорошие колодки – не просто те, что не скрипят. Хорошие диски – не просто те, что вышли с завода ровными и круглыми, а те, что выполнены из качественного материала, имеют эффективное охлаждение и, соответственно, не деформируются при активной эксплуатации. Конечно, даже покоробленные диски в ряде случаев можно проточить, но чудес обычно не бывает: если они испортились раз, то испортятся и второй. Мы с этими прописными истинами, разумеется, согласны, а потому рассказываем не только о теории, но и о выборе качественной продукции – такой, как Ferodo. Уж если этому бренду более 120 лет и специалисты Ferodo разрабатывали и производили детали тормозной системы и для повозок в далеком 1897 году, и делают это сейчас для современных автомобилей, то в тормозах они разбираются однозначно.

Дисковые тормоза — виды, устройство и принцип работы

В начале первой половины 20 века стало ясно, что скорости серийных автомобилей возросли, и существующие конструкции тормозных механизмов перестали соответствовать даже тем примитивным требованиям безопасности. Барабанные и прочие устаревшие конструкции пора было менять, в результате появился принципиально новый тормоз – дисковый.

Дисковые тормоза — виды, устройство и принцип работы

Схема и порядок действия дискового тормоза

Принципиальное отличие заключается в работе тормозных колодок с фрикционными накладками не по внутренней поверхности тормозного барабана, а по наружным торцам массивного стального или чугунного диска. Отсюда образовался и типовой состав колёсного тормоза:

  • диск, соединённый со ступицей колеса;
  • тормозные колодки, охватывающие диск с двух сторон;
  • механизм удержания колодок, включающий суппорты и скобы;
  • исполнительные (рабочие) гидравлические цилиндры привода тормозов;
  • вспомогательные и крепёжные элементы в зависимости от конкретной конструкции.

Суппорт крепится к элементам подвески, в случае управляемых колёс это поворотный кулак, а для задних передача реактивного крутящего момента и продольного усилия может происходить через аналогичный узел или кожух чулка заднего моста.

Дисковые тормоза — виды, устройство и принцип работы

Назначение суппорта состоит в удержании тормозных колодок в рабочей зоне, предоставлении им свободы в направлении прижатия к диску и обратно, для отвода при растормаживании. Усилия здесь значительны, поэтому суппорты представляют собой геометрически сложные конструкции, прочные и массивные, выполненные при помощи литья.

Читать статью  Проваливается педаль тормоза: 15 причин и методы ремонта своими руками

Внутри суппорта располагаются рабочие гидроцилиндры, один или несколько, в зависимости от мощности и надёжности системы. Они могут быть выполнены как в виде отдельных деталей, зафиксированных на суппортах различными способами, так и путём размещения поршней в проточках материала суппорта. К цилиндрам подходят гибкие шланги привода, а для прокачки от воздуха имеются отдельные штуцеры в верхней части рабочих объёмов.

Если гидроцилиндры воздействуют только на одну колодку, то противоположная приводится от скобы плавающего типа, охватывающей диск с внешней стороны его окружности. Жёсткость скобы, которая также представляет собой массивную литую деталь, обеспечивает передачу второй колодке точно такого же усилия, что и от поршня первой, но с противоположной от диска стороны.

Возможно расположение рабочих цилиндров в многопоршневых системах симметрично относительно плоскости диска, напротив друг друга. Равенство усилий в этом случае определяется одинаковыми диаметрами поршней и подачей на них одного и того же давления с гидравлики привода.

Как правило, диски выполняются из чугуна, имеющего подходящие фрикционные характеристики. Возможно и применение иных материалов. К ним прижимаются колодки, располагающие для этого приклёпанными или приклеенными накладками из тщательно подобранного материала, удовлетворяющего целому спектру требований.

Две основные схемы организации суппортов

Отличие заключается в организации скобы. Её можно жёстко зафиксировать относительно поворотного кулака, тогда поршни придётся разместить симметрично относительно диска. Каждый из них будет действовать на свою колодку, и обе эти силы равны по законам геометрии и гидравлики. Это равенство обеспечит отсутствие паразитной разницы в усилиях, которая способна действовать перпендикулярно плоскости диска в целом и нагружать ступичные подшипники. Диск будет лишь сжиматься встречными силами прижатия колодок.

Дисковые тормоза — виды, устройство и принцип работы

Примерно так же сработает более простая система с плавающей скобой. По направляющим прорезям в суппорте скоба способна перемещаться, выравнивая усилие на колодках, хотя поршень действует лишь на одну из них. Возникает ситуация, когда через систему виртуальных рычагов, образованных суппортом, направляющими и скобой, поршень давит на одну колодку, а цилиндр – на другую. Разумеется, эти силы равны, хотя на практике не всё так просто.

Принципиальным недостатком плавающего механизма является наличие силы трения в направляющих скобы. По причинам естественного износа, загрязнения или неточностей в исполнении эти силы могут достигать значительной величины, что ведёт к неравномерному износу внутренней и внешней колодок. Таков существенный недостаток, которым приходится расплачиваться за относительную простоту конструкции.

Дисковые тормоза — виды, устройство и принцип работы

Систему с фиксированной скобой, несмотря на затраты, активно используют в дорогих, быстроходных, тяжёлых и спортивных автомобилях. Причём когда речь идёт о поршнях, то дело редко ограничивается одним в плавающей схеме или двумя в фиксированной. По разным причинам количество цилиндров увеличивается, достигая шести или даже восьми в самых совершенных и мощных тормозах. Такие конструкции сложны, дорого стоят, но при этом чрезвычайно надёжны, работают с высокой эффективностью, останавливая машины с огромной кинетической энергией за считанные секунды.

Работа тормозов

Принцип действия дисковой системы прост и интуитивно понятен. После нажатия педали водителем поршень главного тормозного цилиндра перемещается, выбирая все зазоры и оказывая давление на несжимаемую тормозную жидкость. Оно равно в любой точке магистрали, а значит и во всех исполнительных цилиндрах. Равенство площадей поршней в рабочих цилиндрах обеспечивает полную идентичность сил, действующих на тормозные колодки одной оси автомобиля.

Распределение усилий по осям – это тема, разрабатываемая в рамках устройства привода и обеспечивающая тормозной баланс автомобиля. Но на одной оси силы должны быть строго равны, иначе на ровной и однородной поверхности возникнет занос автомобиля. Исключение составляет сознательное управление силами в активных системах тормозов.

Поршни рабочих цилиндров давят на колодки со стороны металлической подложки, а фрикционные накладки со значительной силой прижимаются к дискам. Благодаря нормированному коэффициенту трения, на дисках, а значит и на колёсах, возникает тормозной момент, придающий автомобилю нужное замедление.

Особенности конструкции дисков

Обычно диски изготовлены из чугуна, обладающего хорошей износостойкостью, твёрдостью и приемлемым коэффициентом трения. Для гражданских автомобилей этого вполне достаточно, но там, где требуется повышенная мощность и температурная стойкость, используются особые приёмы:

  • в качестве материала для дисков может быть использована легированная сталь, которая лучше ведёт себя при высоких температурах, меньше деформируется после термоциклирования и обладает лучшей механической прочностью;
  • в особых случаях диск может быть изготовлен из специальных материалов, например, углепластиков, они прочнее стали, меньше весят и обладают повышенным коэффициентом трения;
  • для улучшений теплоотвода диски снабжаются внутренней вентиляцией, при вращении воздух прогоняется через полости с отлитыми там аэродинамическими элементами;
  • улучшение условий работы в тонком слое между накладками колодок и поверхностью диска достигается выполнением в последнем перфорации, отводящей разогретые продукты износа, образующиеся газы, и дополнительно охлаждающей самую горячую зону контакта.

Дисковые тормоза — виды, устройство и принцип работы

Диск подвержен износу, поэтому с достижением минимально допустимой толщины он подлежит обязательной замене. Слишком тонкий диск теряет прочность и заставляет поршни выходить из цилиндров на нерасчётное расстояние, что чревато потерей герметичности.

Самые распространённые причины преждевременного выхода дисков из строя – это биение в результате остаточной температурной деформации и образование трещин. Обеспечение безопасности требует регулярного осмотра дисков при каждом ТО с замером толщины. Измерять надо рабочую зону, поскольку диски изнашиваются неравномерно, по краю почти всегда образуется буртик. Иногда его механически удаляют при замене колодок.

Материалы, применяемые в колодках

В первых колодках дисковых тормозов активно использовался асбест, поскольку он обладал хорошим коэффициентом трения, волокна армировали наполнитель накладок, а высокие температуры никак на него не влияли. Но асбестовая пыль обладает канцерогенной активность, поэтому сейчас применяются иные материалы:

  • металлические армирующие волокна;
  • металлокерамика;
  • органические вещества.

Чем совершенней материал, тем колодки дороже обходятся, поэтому для одной и той же модели автомобиля цена комплекта может отличаться на порядок. Хорошие колодки физически и химически защищены от появления характерного скрипа, мягко включаются в работу, стойки к нагреву. А фрикционные свойства и прочность материала подобраны таким образом, чтобы на одну замену диска приходилось примерно три замены колодок. Излишне твёрдые и абразивные вещества быстро убивают диск, а в противоположном случае колодки приходится менять слишком часто, что никак не способствует надёжной работе. Часто колодки снабжены электронным или акустическим индикаторами износа.

Достоинства и недостатки дисковой системы

К очевидным плюсам относятся:

  • высокая эффективность торможения;
  • стойкость к перегревам;
  • стабильность работы даже после попадания воды;
  • точность срабатывания по колёсам;
  • простота компоновки;
  • малая затратность обслуживания;
  • низкий вес неподрессоренных масс.

Минусами стали только плохая защищённость от загрязнений и механических повреждений. Изначально высокая себестоимость при массовом производстве исключается из перечня недостатков. Дисковые тормоза сейчас применяются практически на всех классах автомобилей, в том числе и ряде грузовых. Исключение составляют лишь вездеходы, где на первый план выходит защита на плохих дорогах.

Источник https://techautoport.ru/hodovaya-chast/tormoznaya-sistema/diskovyi-tormoz.html

Источник https://www.kolesa.ru/article/kak-rabotaet-tormoznoy-disk-i-chem-on-luchshe-barabana-razbiraemsya-vmeste-s-ferodo

Источник https://avtotachki.com/diskovye-tormoza-vidy-ustroystvo-i-princip-raboty/

Понравилась статья? Поделиться с друзьями: