Всё про тормозную систему машины

Содержание

Всё про тормозную систему машины

Расскажем про устройство тормозной системы автомобиля для начинающих и чайников: из чего состоит и как работает (основы). Вопросы и ответы. Как развивалась тормозная система машины.

  • основная (рабочая) — обеспечивает замедление машины не менее 5,8 м/с2, движущегося со скоростью не более 80 км/ч при усилии на педаль менее 50 кг;
  • вспомогательная (аварийная) — обеспечивает замедление не менее 2,75 м/с2;
  • стояночная — может быть совмещена с аварийной.

Как работает

Принцип работы любой тормозной системы прост. Водитель, воздействуя на педаль тормоза передает усилие через ряд устройств на колесные механизмы, которые, в свою очередь, воздействуют на тормозные диски, прижимая к ним колодки и тем самым останавливая их вращение и, соответственно автомобиль в целом. Наиболее часто используется рабочая. Она состоит из ряда устройств, позволяющих водителю снижать скорость вплоть до полной остановки.

  • тормозные устройства (дисковые, барабанные);
  • главный тормозной цилиндр;
  • вакуумный усилитель тормозов;
  • магистрали с тормозной жидкостью;
  • регулятор тормозных сил.

Главный тормозной цилиндр (ГТЦ)

Обычно крепится к корпусу вакуумного усилителя тормозов. А сверху находится полупрозрачный полиэтиленовый бачок с датчиком недостаточного уровня тормозной жидкости. На бачке нанесены метки максимального и минимального уровней жидкости. В зависимости от конструкции машины бачок тормозной жидкости также может быть установлен отдельно от ГТЦ и прикреплен к кузову в подкапотном пространстве автомобиля.

Главный тормозной цилиндр конструктивно определяет разделение рабочих контуров гидропривода (например, тормозные механизмы подключены параллельно: два передних + два задних). ГТЦ состоит из двух последовательно расположенных поршней. Каждый из поршней отвечает за давление в отдельно взятом контуре. Если один из контуров по каким-то причинам не работает (поврежден трубопровод и жидкость вытекла из контура задних тормозов), то второй контур (контур передних тормозов) продолжает функционировать, и обеспечивает торможение автомобиля, хотя и с меньшей эффективностью.

Основной неисправностью ГТЦ является потеря герметичности . Он начинает пропускать жидкость, что легко заметить. Жидкость начинает стекать по корпусу вакуумного усилителя, а ее уровень в бачке пропорционально уменьшаться. В этом случае необходим ремонт или замена ГТЦ.

Регулятор

Уменьшает давление в приводе механизмов задних колес. Его ещё называют « колдун ».

При торможении сила инерции движущегося автомобиля и противодействующая ей сила трения создают опрокидывающий момент. Передняя подвеска, реагируя на него, «проседает», а задние колеса «разгружаются». Поэтому даже при не интенсивном торможении задние колёса могут блокироваться, что часто приводит к заносу машины. В зависимости от изменения расстояния между элементами задней подвески и кузовом давление в приводе задних тормозов (по сравнению с передними) ограничивается.

В результате блокировки задних колес (в зависимости от замедления и загруженности автомобиля) не происходит или она возникает значительно позже.

Рабочий контур

  • 2 + 2 подключенных параллельно (передние + задние);
  • 2 + 2 подключенных диагонально (правый передний + левый задний и т. д.);
  • 4 + 2 тормозных механизма (в один контур подключены тормозные механизмы всех колес, а в другой только два передних).

Схема компоновки гидропривода: 1 — главный тормозной цилиндр с вакуумным усилителем; 2 — регулятор давления жидкости в задних механизмах; 3-4 — рабочие контуры.

На многих машинах в тормозной привод встраивают антиблокировочные системы (АБС). Конструктивно АБС — это совокупность датчиков, модуляторов и блока управления. При торможении блок управления анализирует поступающую от датчиков информацию о скорости автомобиля и угловой скорости вращения колес, отслеживает работу исполнительных механизмов, которые регулируют давление жидкости в том или ином колесном механизме, не давая ему заблокироваться в случае экстренного торможения.

Таким образом, для любого состояния дороги определяется режим «относительного скольжения», обеспечивающего минимальный тормозной путь, и полная блокировка колес становится невозможной при любом усилии на педаль тормоза.

Тормозные механизмы

Разделяют на дисковые и барабанные.

Дисковые бывают с подвижным или неподвижным суппортом. Наибольшее распространение получили механизмы с подвижным суппортом, которые исключают неравномерный износ колодок. Еще одной особенностью механизма с подвижным суппортом является меняющееся расстояние от внешнего габарита до колесного диска в зависимости от состояния колодок.

Дисковые тормоза эффективнее барабанных и работают в более высоком температурном режиме. Для лучшего отвода тепла из рабочей зоны часто используют вентилируемые диски. Его увеличенная толщина позволяет разместить между поверхностями трения ребра жесткости, которые обеспечивают принудительную циркуляцию воздуха. При вращении создается центробежная сила, она заставляет поступающий воздух устремляться от центра к краям диска. Нагретый воздух выбрасывается в окружающую среду, а вентилируемый диск охлаждается.

Барабанные механизмы устанавливают обычно на задние колёса. В процессе работы зазор между колодкой и барабаном увеличивается. Для его устранения предназначены механические регуляторы. Износ колодок компенсируется их самоподводкой, происходящей, как правило, при резком торможении. Теплоотвод осуществляется через колодочные накладки, массивную металлическую основу и ребра охлаждения тормозного барабана.

Вспомогательная (аварийная) система

Начинает действовать при разгерметизации одного из рабочих контуров (вытекает тормозная жидкость). В этом случае в бачке с тормозной жидкостью, разделенном на два независимых объема, уровень понижается до критической отметки. Далее он продолжает понижаться только в объеме неисправного контура, а объем исправного сохраняет критический уровень жидкости.

Стояночная система

Имеет механический привод, как правило, на задние колёса. Рычаг стояночного тормоза соединяется тонким тросом с задними механизмами, в которых находится устройство, приводящее в действие штатные или дополнительные (стояночные) колодки.

1 – кнопка фиксации рычага; 2 – рычаг привода стояночного тормоза; 3 – защитный чехол; 4 – тяга; 5 – уравнитель троса; 6 – регулировочная гайка; 7 – контргайка; 8 – трос; 9 – оболочка троса.

Вопросы по работе

Барабанные или дисковые

Барабанные тормоза автомобиля долговечнее, но проигрывают дисковым в эффективности. Ведь длина тормозного пути также зависит от скорости срабатывания системы — и здесь «барабаны» уступают «дискам». Дисковые механизмы лучше охлаждаются и сохраняют эффективность при интенсивном торможении. Барабанные тормоза сложно осушить после проезда по глубокой луже и они более склонны к замерзанию.

Срок службы тормозных колодок

Для большинства автомобилей пробег колодок до полного износа составляет до 60 000 км при езде в обычном режиме. Срок службы зависит от стиля вождения, а наличие дефектов на поверхности диска может заметно его сократить. Подробнее в статье — как определить износ колодок.

Температура торможения

Температуры, возникающие при трении между колодками и дисками, в норме не превышают 370°С даже в условиях интенсивного движения. При спортивной езде — порядка 480-650°С являются обычной, возрастая до 820°С, Примерно до такой температуры нагреваются колодки машины, когда они приобретают красноватый оттенок.

Не стоит приобретать спортивные колодки из-за того, что любите быструю езду. Подавляющее большинство их нуждается в предварительном «разогреве» и не будут эффективно работать при обычных температурах, а это чревато аварийной ситуацией.

Педаль тормоза становиться мягкой или жесткой

Зачастую педаль тормоза кажется в первое время «мягкой» после установки новых колодок. Необходим некоторый промежуток времени для притирки трущихся поверхностей. «Жесткой» педаль становится после некоторого времени или из-за неисправностей (заклинивание цилиндров суппорта в одном из контуров системы).

Большой ход педали тормоза

Увеличенный свободный ход сопровождается ростом тормозного пути. Часто это происходит, когда тормозная система «хватанула» воздуха, поэтому систему придется прокачивать и определять возможные утечки тормозной жидкости. Иногда педаль становится свободной из-за разбухания тормозных шлангов. Тот же эффект дают порванные нити корда шланга. Иногда может закипеть тормозная жидкость, но это бывает с очень старой тормозухой, которую вообще никогда не меняли.

Еще одна причина – большое биение одного или нескольких тормозных дисков. Также может не работать автомат поддержания зазора в барабанных тормозных механизмах.

Преимущества в перфорированных дисках

Они имеют некоторые преимущества — разрушают поверхностную пленку, образующуюся при перегревании тормозов, поддерживают чистоту поверхности тормозной колодки, удаляя продукты сгорания, образующиеся на трущихся поверхностях под воздействием высоких температур.

Что такое горный тормоз

Используется на автобусах и грузовых автомобилях для притормаживания на спусках без использования рабочих тормозов, чтобы не перегреть их. Бывают нескольких видов. Например, моторный горный тормоз, который сочетает прекращение подачи топлива в мотор и перекрытие выпускного тракта для увеличения насосных потерь. Различают магнитоэлектрические и гидродинамические тормоза, где лишняя энергия переводится в тепло через перемешивание жидкости или явление электромагнитной индукции.

Как развивалась тормозная система

Даже на дешевых машинах барабанные тормоза исчезают, а система АБС обязательна для всех новых авто. Взамен появляются дисковые тормоза, которые обладают большей эффективностью. Производители устанавливают на передней оси вентилируемые диски, а на задней — дисковые без вентиляции. Это понятно, ведь нагрузка на задние тормоза меньше, чем на передние.

Путь от момента нажатия на педаль тормоза до начала торможения составляет: при скорости 20 км/ч — 4 м, 40 — 8 м, 60 км/ч — 12 м, 80 — 16 м, 100 км/ч — 20 м. Соответственно тормозной путь в этих случаях составляет: 3, 11, 24, 42, 66 м. Дистанция до впереди идущего автомобиля должна быть не менее: при скорости 40 км/ч — 20 м, 50 — 25 м, 80 км/ч — 80 м. В дождь дистанция должна быть увеличена в полтора раза.

Читать статью  Что делать при отказе тормозов

С повышением скорости автомобилей возросла мощность тормозной системы, значит требуется дополнительное охлаждение. Стали применять диски с перфорацией и дополнительными канавками, которые ранее были привилегией спортивных машин. Их устанавливают на мощных авто в базовой комплектации. Из автоспорта перешли керамические тормозные диски. Они обладают большей прочностью и быстрее охлаждаются, по сравнению с чугунными. Возможно, «керамика» в будущем будет ставиться на машины среднего класса.

Главное достоинство керамических дисков — они не перегреваются при интенсивном торможении. По этой причине их применяют в автоспорте и на спортивных машинах в качестве опции.

Новинка тормозной системы — система Brake Assist. Суть в том, что радар, установленный на бампере определяет расстояние до впереди идущего автомобиля. Если это расстояние, по его мнению будет критическим, то система подает сигнал на привод тормозов. Он приближает колодки к диску всего на несколько десятых долей миллиметра. При нажатии на педаль тормоза в этот момент, система Brake Assist позволяет сократить тормозной путь.

Последнее веяние — управление тормозами по проводам без механической связи. Такую систему, например имеет Genesis GV70 и GV80, а также европейские производители. Когда водитель давит на педаль тормоза, он лишь сжимает упругий элемент, имитирующий обратную связь. В зависимости от её положения электроника при помощи мотора двигает поршни в главном цилиндре. Механической связи с педалью нет. Она подключается только при отказе системы.

Данная система перспективна для электромобилей и машин с автопилотами. А на обычных авто эту систему выдаёт отсутствие вибрации на педали при работе АБС.

На современных авто тормозной путь со 100 км/ч до полной остановки составляет 40-45 метров. На некоторых машинах — до 38 метров. Если посмотрим на 20 лет назад, тогда он составлял 50-60 метров. Прогресс очевиден.

Устройство и принцип работы тормозной системы автомобиля

Тормозная система автомобиля (англ. – brake system) относится к системам активной безопасности и предназначена для изменения скорости движения автомобиля вплоть до его полной остановки, в том числе экстренной, а также удержания машины на месте в течение длительного периода времени. Для реализации перечисленных функций применяются следующие виды тормозных систем: рабочая (или основная), запасная, стояночная, вспомогательная и антиблокировочная (система курсовой устойчивости). Совокупность всех тормозных систем автомобиля называется тормозным управлением.

Рабочая (основная) тормозная система

Главное предназначение рабочей тормозной системы заключается в регулировании скорости движения автомобиля вплоть до его полной остановки.

Основная тормозная система состоит из тормозного привода и тормозных механизмов. На легковых автомобилях применяется преимущественно гидравлический привод.

Устройство тормозной системы

Гидропривод состоит из:

    ; ; (при отсутствии АВS); (при наличии);
  • рабочих тормозных цилиндров;
  • рабочих контуров.

Главный тормозной цилиндр преобразует усилие, сообщаемое водителем педали тормоза, в давление рабочей жидкости в системе и распределяет его по рабочим контурам.

Для увеличения силы, создающей давление в тормозной системе, гидропривод оснащается вакуумным усилителем.

Регулятор давления предназначен для уменьшения давления в приводе тормозных механизмов задних колес, что способствует более эффективному торможению.

контуры тормозной системы

Контуры тормозной системы, представляющие собой систему замкнутых трубопроводов, соединяют между собой главный тормозной цилиндр и тормозные механизмы колес.

Контуры могут дублировать друг друга или осуществлять только свои функции. Наиболее востребована двухконтурная схема тормозного привода, при которой пара контуров работает диагонально.

Запасная тормозная система

Запасная тормозная система служит для экстренного или аварийного торможения при отказе или неисправности основной. Она выполняет те же функции, что и рабочая тормозная система, и может функционировать и как часть рабочей системы, и как самостоятельный узел.

Стояночная тормозная система

Схема стояночного тормоза

Основными функциями и назначением стояночной тормозной системы являются:

  • удержание транспортного средства на месте в течение длительного времени;
  • исключение самопроизвольного движения автомобиля на уклоне;
  • аварийное и экстренное торможение при выходе из строя рабочей тормозной системы.

Устройство тормозной системы автомобиля

Общий вид системы

Основой тормозной системы являются тормозные механизмы и их приводы.

Тормозной механизм служит для создания тормозного момента, необходимого для торможения и остановки транспортного средства. Механизм устанавливается на ступице колеса, а принцип его работы основан на использовании силы трения. Тормозные механизмы могут быть дисковыми или барабанными.

Конструктивно тормозной механизм состоит из статичной и вращающейся частей. Статичную часть у барабанного механизма представляет тормозной барабан, а вращающуюся – тормозные колодки с накладками. В дисковом механизме вращающаяся часть представлена тормозным диском, неподвижная – суппортом с тормозными колодками.

Управляет тормозными механизмами привод.

Гидравлический привод не является единственным из применяемых в тормозной системе. Так в системе стояночного тормоза используется механический привод, представляющий собой совокупность тяг, рычагов и тросов. Устройство соединяет тормозные механизмы задних колес с рычагом стояночного тормоза. Также существует электромеханический стояночный тормоз, в котором используется электропривод.

В состав тормозной системы с гидравлическим приводом могут быть включены разнообразные электронные системы: антиблокировочная, система курсовой устойчивости, усилитель экстренного торможения, система помощи при экстренном торможении (Brake Assist System).

Существуют и другие виды тормозного привода: пневматический, электрический и комбинированный. Последний может быть представлен как пневмогидравлический или гидропневматический.

Принцип работы тормозной системы

Работа тормозной системы строится следующим образом:

  1. При нажатии на педаль тормоза водитель создает усилие, которое передается к вакуумному усилителю.
  2. Далее оно увеличивается в вакуумном усилителе и передается в главный тормозной цилиндр.
  3. Поршень ГТЦ нагнетает рабочую жидкость к колесным цилиндрам через трубопроводы, за счет чего растет давление в тормозном приводе, а поршни рабочих цилиндров перемещают тормозные колодки к дискам.
  4. Дальнейшее нажатие на педаль еще больше увеличивает давление жидкости, за счет чего срабатывают тормозные механизмы, приводящие к замедлению вращения колес. Давление рабочей жидкости может приблизиться к 10-15 МПа. Чем оно больше, тем эффективнее происходит торможение.
  5. Опускание педали тормоза приводит к ее возврату в исходное положение под действием возвратной пружины. В нейтральное положение возвращается и поршень ГТЦ. Рабочая жидкость также перемещается в главный тормозной цилиндр. Колодки отпускают диски или барабаны. Давление в системе падает.

Важно! Рабочую жидкость в системе нужно периодически менять. Сколько тормозной жидкости потребуется на одну замену? Не более литра-полутора.

Основные неисправности тормозной системы

В таблице ниже приведены наиболее распространенные неисправности тормозной системы автомобиля и способы их устранения.

СимптомыВероятная причинаВарианты устранения
Слышен свист или шум при торможенииИзнос тормозных колодок, их низкое качество или брак; деформация тормозного диска или попадание на него постороннего предметаЗамена или очистка колодок и дисков
Увеличенный ход педалиУтечка рабочей жидкости из колесных цилиндров; попадание воздуха в тормозную систему; износ или повреждение резиновых шлангов и прокладок в ГТЦЗамена неисправных деталей; прокачка тормозной системы
Увеличенное усилие на педаль при торможенииОтказ вакуумного усилителя; повреждение шланговЗамена усилителя или шланга
Заторможенность всех колесЗаклинивание поршня в ГТЦ; отсутствие свободного хода педалиЗамена ГТЦ; выставление правильного свободного хода

Заключение

Тормозная система является основой безопасного движения автомобиля. Поэтому на нее всегда должно быть обращено пристальное внимание. При неисправности рабочей тормозной системы эксплуатация транспортного средства запрещается полностью.

Тормозная система автомобиля: назначение, устройство и принцип работы

Ремонт автомобиля

Устройство системы и принцип действия

Основное в тормозной системе любого автомобиля – это тормозные механизмы и их приводы. Гидравлический тормозной привод, применяемый на легковых автомобилях, состоит из:

тормозная система схема

Принцип работы таков — водитель нажимает на педаль тормоза, приводя в движение поршень главного тормозного цилиндра. Поршень выдавливает жидкость в трубопроводы к тормозным механизмам, которые тем или иным образом создают сопротивление вращению колес, и таким образом происходит торможение.

Отпущенная педаль тормоза посредством возвратной пружины возвращает поршень назад, и жидкость перетекает обратно в главный цилиндр – колеса растормаживаются.

На отечественных заднеприводных автомобилях схема тормозной системы предусматривает раздельную подачу жидкости из главного цилиндра на передние и задние колеса. На иномарках и переднеприводных ВАЗах применяется схема контура трубопровода «левое переднее – правое заднее» и «правое переднее – левое заднее».

Классификация тормозных систем автомобиля

Тормозная система автомобиля состоит из нескольких видов механизмов, каждый из которых выполняет определенные функции. Одни из них взаимосвязаны между собой, другие могут выполнять несколько функций одновременно.

Но в целом, тормозная система включает в себя такие их виды:

  1. Рабочий механизм.
  2. Стояночный.
  3. Запасной.
  4. Вспомогательные.

Рабочий тормоз является основным. Именно при помощи него осуществляется замедление движения вплоть до полной остановки во время движения. Управляется он за счет педали, установленной в салоне. Нажимая на нее ногой с разным усилием, водитель регулирует скорость замедления автомобиля.

Для исключения повышения оборотов силовой установки с одновременным замедлением, управление педалями акселератора и тормоза осуществляется одной ногой — правой. То есть, водитель либо управляет мотором, либо тормозами.

Стояночный тормоз предназначен для обездвиживания автомобиля во время стоянки и предотвращения самовольного его передвижения. Организована работа этого типа тормозов так, что при стоянке водитель блокирует вращение колес. Для этого также можно задействовать трансмиссию автомобиля (включенная передача не дает свободно вращаться колесам), но при постановке машины под уклоном трансмиссия не всегда может удержать автомобиль.

схема ручного тормоза

Используя же трансмиссию в паре со стояночным тормозом, можно достаточно эффективно обездвижить автомобиль, особенно если ручник послаблен и «не держит» автомобиль. Дополнительно ручной тормоз является вспомогательным средством при начале движения на подъем.

Читать статью  Как самостоятельно проверить тормоза на своем автомобиле: от суппорта до качества тормозной жидкости

Поскольку водитель не может одновременно управлять двумя педалями – газом и тормозом, то высока вероятность, что при попытке тронуться с места на подъем автомобиль откатиться назад. В случае же использования ручника, машину можно удерживать, пока двигатель не сможет сдвинуть авто с места, а после тормоз отпустить, тем самым исключив вероятность отката назад.

Запасной тормоз реализуется далеко не на всех автомобилях. Предназначен он для обеспечения торможения автомобиля в случае отказа рабочего механизма. Может быть реализован как отдельная автономная система, воздействующая на тормозные механизмы колес, или же запасной тормоз может быть частью контура рабочей системы.

Зачастую этот тип на легковые авто не устанавливается, а его роль выполняется стояночный тормоз.

Вспомогательные механизмы встречаются на грузовых автомобилях и позволяют разгрузить рабочий тормоз при движении на затяжных спусках. Также к вспомогательным механизмам относятся контуры системы, отвечающие за срабатывание тормозных механизмов прицепов.

Типы тормозных механизмов, применяемые в автомобилях

тормозной диск и суппорт

На подавляющем большинстве авто установлены тормозные механизмы фрикционного типа, работающие по принципу сил трения. Устанавливаются они непосредственно в колесе и конструктивно подразделяются на:

Существовала традиция устанавливать барабанные механизмы на задние колеса, а дисковые на передние. Сегодня в зависимости от модели могут ставиться одинаковые типы на все четыре колеса – или барабанные, или дисковые.

Устройство и работа барабанного тормозного механизма

Устройство системы барабанного типа (барабанный механизм) состоит из двух колодок, тормозного цилиндра и стяжной пружины, размещенных на щите внутри тормозного барабана. На колодки наклепаны или приклеены фрикционные накладки.

задние колодки

Тормозные колодки своими нижними концами шарнирно закреплены на опорах, а верхними – под воздействием стяжной пружины – упираются в поршни колесного цилиндра. В незаторможенном положении между колодками и барабаном имеется зазор, обеспечивающий свободное вращение колеса.

Когда через тормозную трубку в цилиндр поступает жидкость, поршни, расходясь, раздвигают колодки. Они приходят в плотное соприкосновение с вращающимся на ступице тормозным барабаном, и сила трения вызывает торможение колеса. Необходимо отметить, что в приведенной конструкции износ передних и задних колодок происходит неравномерно. Дело в том, что фрикционные накладки передней по ходу движения колодки в момент торможения при движении вперёд прижимаются к барабану всегда с большей силой, чем задние.

Как выход, рекомендуется менять колодки местами через определенный срок.

Тормозной механизм дискового типа

Устройство дисковых тормозов состоит из:

  • суппорта, закрепленного на подвеске, в теле которого размещены наружный и внутренний тормозные цилиндры (может быть один) и две тормозные колодки;
  • диска, который закреплен на ступице колеса.

дисковые тормоза

При торможении поршни рабочих цилиндров с помощью гидравлики прижимают тормозные колодки к вращающемуся диску, останавливая последний.

Преимущества и недостатки

Поскольку о ленточных приводах говорить не имеет смысла, стоит обсудить сильные и слабые стороны дисковых и барабанных тормозных систем. К достоинствам дисковых решений относят следующие моменты:

  • высокий уровень эффективности;
  • небольшой вес;
  • компактные размеры;
  • низкая температура гидравлической жидкости при работе;
  • высокие показатели надёжности;
  • стабильность.

При этом дисковые тормоза недостаточно хорошо защищены от грязи, которая способна негативно повлиять на работоспособность всей системы. Что же касается барабанных аналогов, то их преимуществами являются:

  1. Большие показатели усилия. Это позволяет эффективно использовать барабаны на больших машинах и грузовиках, поскольку их масса внушительная, а потому дисковыми тормозами останавливать подобные транспортные средства сложнее.
  2. Длительный срок службы. Внутрь привода не проникает грязь, а потому накладки изнашиваются с меньшей интенсивностью.
  3. Доступная цена. Это касается покупки и обслуживания.

Но не всё так идеально с барабанными тормозами. Нельзя забывать про медленную скорость из реакции на нажатие педали, а также вероятность залипания тормозных колодок. Такое происходит, если машину в условиях сильной жары или чрезмерного холода оставляют на улице с включённым ручным тормозом.

Резкое торможение

Виды тормозных систем

Существует несколько классификаций. Самая распространённая – деление по функциональному назначению и применению. В зависимости от этого система может быть четырёх видов.
Рабочая. Задействована во всех режимах движения транспорта. Предназначена для снижения скорости транспортного средства до момента полной остановки и кратковременного удержания авто на месте.
Запасная. Нужна для остановки транспортного средства в чрезвычайной ситуации (при выходе из строя базовой – рабочей системы). Тормозящее действие – существенно меньше. Но в экстренной ситуации его достаточно, чтобы предотвратить аварию.
Стояночная. Служит для удержания транспортного средства на месте, предупреждает его самопроизвольное движение. Это, прежде всего, актуальное решение при уклоне дорожного полотна в холмистой местности. Кроме того, для коммерческого транспорта большой грузоподъёмности, автобусов это ещё и отличное подспорье для оптимизации нагрузки на цилиндры основной – рабочей системы. Управляется водителем посредством рычага ручного тормоза.

Вспомогательная. Устанавливается на коммерческом транспорте. Помогает при движении на затяжном спуске. Сохраняет стабильную скорость транспортного средства, снижает нагрузку на колёсный тормоз.
В ряде случаев функции могут совмещаться . Например, функцию запасной системы может взять на себя стояночная система Кроме того, в зависимости от рабочего тела , за счёт которой система приводится в действие, выделяют следующие типы тормозных систем:

  • Гидравлическая. Это решение используют для легковых автомобилей, внедорожников, микроавтобусов, малогабаритных грузовиков и спецтехники.
  • Пневматическая. Монтируется на грузовых машинах, погрузчиках, грейдерах, автокранах, бульдозерах.
  • Механическая. Привод механическими тягами был использован на первых автомобилях. Но из-за низкого КПД и проблем с равномерным распределением усилия на все колёса, сейчас это решение не актуально .
  • Комбинированная (например, может совмещаться гидравлический и пневматический механизм работы).

Отдельно следует выделить систему рекуперативного торможения. Чаще устанавливается на грузовом транспорте (карьерных самосвалах) на городских автобусах и на современных легковых гибридных автомобилях.
Физические основы торможения.
Движение авто всегда связано с наличием кинетической энергии. Процесс торможения всегда связан с преобразованием кинетической энергии в тепловую. Тепловая энергия, выделяющаяся при трении диска и колодок рассеивается в окружающую среду. При рекуперативном торможении часть кинетической энергии преобразуется в электрическую энергию, которая запасается для её использования при разгоне автомобиля.
Принцип рекуперативного торможения долгое время использовался на железнодорожном транспорте, но вскоре он стал базовым и для работы тормозной системы авто.

Принцип действия гидравлической системы

Гидравлическая система реализует следующий принцип:

  • Водитель нажимает на педаль, мышечное усилие передаётся на поршень главного цилиндра где преобразуется в давление тормозной жидкости.
  • Жидкость вытесняется поршнем в гидравлические линии (трубки).
  • По трубопроводам жидкость под давление подаётся к исполнительным цилиндрам.
  • Срабатывают механизмы торможения.
  • Скорость вращения колёс уменьшается.

Рабочим телом в гидравлической системе является жидкость, на 93-98%, состоящая из полигликолей и их эфиров, и на 2-7% — из присадок, предназначенных для защиты деталей от коррозии. Обладающая высокой плотностью, жидкость не сжимается, и гидропривод срабатывает очень быстро. Еще одно достоинство гидропривода – его самодостаточность. Конструкция не содержит компрессор или иное устройство, зависимое от работы мотора.
При перемещении жидкости по трубопроводу потеря энергии – несущественная, и КПД гидропривода достаточно высок (исключение – работа при температурах ниже минус 30 °С).

Работа тормозной системы с рекуперацией

Принцип же действия тормозной системы с рекуперацией иной:

Электронный модуль управления.png

  1. При нажатии на педаль в генераторном режиме запускается электромотор (у электрического и гибридного транспорта) Создаётся тормозной момент на валу мотора.
  2. Начинает вырабатываться электрическая энергия, направляемая в аккумуляторы или суперконденсаторы.
  3. Если транспорт неэлектрический – запасается кинетическая энергия вращения маховика (впоследствии её используют для разгона).

Многие современные автомобили оснащены электронно-управляемой системой торможения, которая одновременно выполняет функции антиблокировочной, пробуксовочной системы; а также оснащена функцией динамической стабилизации транспортного средства. Решения с рекуперацией способны обеспечить безисносную работу тормоза, кратчайший путь во время торможения с обеспечением высокой курсовой устойчивости, и предотвращение потери сцепления колёс с дорожным полотном.

Конструктивные решения с пневматикой

Отдельного внимания заслуживают решения с пневматикой.

  1. Энергоносителем служит сжатый воздух.
  2. В работе участвуют компрессор, осушитель, регулятор давления (может быть встроенным в осушитель или самостоятельным устройством) и ресиверы регенерации (компоненты хранения и подачи сжатого воздуха), краны, передаточные устройства.
  3. Через воздушный фильтр в компрессор, работающий при включенном двигателе, втягивается воздух, и через регулятор и многоконтурный защитный клапан воздух под давлением закачивается в ресиверы. Осушитель оптимизирует состав воздуха, а регулятор — его давление.

пневматика.png

У решения много достоинств. При нажатии на педаль сжатый воздух подаётся к исполнительным устройствам, а при освобождении педали он не возвращается обратно в систему, а выходит через клапаны сброса в атмосферу. Система изнашивается менее интенсивно, чем у решений с гидравликой (воздух менее агрессивен, нежели жидкостный наполнитель, нет риска, что энергоноситель закипит или замёрзнет).

  1. Центральный электронный блок управления.
  2. Кран EBS.
  3. Пропорциональный ускорительный клапан.
  4. Магнитный клапан ABS.
  5. Модулятор задней оси.
  6. Разобщающий клапан резервного контура.
  7. Клапан управления тормозами прицепа.

Уход за тормозной системой автомобиля

Тормозная система играет одну из основных ролей в обеспечении безопасности при движении на автомобиле. Поэтому в обязательном порядке необходимо следить за ее состоянием и своевременно проводить техническое обслуживание. Поскольку что в рабочем, что в стояночном тормозе составных элементов немного, то уход за всей системой не очень сложен. В перечень работ по обслуживанию входит:

  • Контроль уровня рабочей жидкости в бачке;
  • Прокачка гидравлического привода для удаления воздуха из системы;
  • Замена изношенных колодок;
  • Проверка и регулировка ручника.

Помимо этого, также периодически следует осматривать состояние гидравлических магистралей, особенно их резиновых частей. Что касается дисков и барабанов, то они тоже изнашиваются, но очень медленно, поэтому замене они подлежат очень редко, если, конечно, диск не покоробило от перепада температур. Следует отметить, что ремонт тормозов авто не является особо дорогостоящим, если он не оборудован дополнительно вспомогательными системами.

А вот если имеется та же АБС, да еще включающая в себя несколько систем (антиблокировка колес и система экстренного торможения) и на премиальном авто, к примеру, любой из современных Ауди, неисправности именно с этими системами могут обойтись очень дорого.

Читать статью  Проваливается педаль тормоза: 15 причин и методы ремонта своими руками

Какой бы тормозной системой не оснащался автомобиль, она требует постоянного контроля работоспособности, а также обслуживания и ремонта, поскольку это значительно влияет на безопасность движения. Без определенных знаний все выше перечисленное сделать сложно, поэтому мы надеемся, что после прочтения данной статьи вы начали хоть немного разобраться в этих вопросах.

Системы безопасности

Современные автомобили оснащаются дополнительным оборудованием, которое призвано повысить безопасность и поднять эффективность основных тормозных механизмов. Многие знают о том, что такое антиблокировочная тормозная система и зачем она нужна. Впервые о ней на практике узнали в 1978 году, когда компания Bosch разработала новинку и запустила её в производство. Тормозная система АБС предназначена для предотвращения блокировки автомобильных колёс, когда водитель резко нажимает на педаль и тормозит.

Это позволяет машине сохранять устойчивость даже при условии экстренной остановки. Плюс АБС способствует сохранению управляемости транспортным средством. Но современные тенденции и увеличение скоростей заставили производителей придумывать новые решения для обеспечения надлежащей безопасности. Помимо АБС, которая стала уже стандартным решением на всех машинах, добавили ещё несколько новых систем. А именно:

  • Brake Assist;
  • Dynamic Brake Control;
  • Cornering Brake Control;
  • Electronic Brake Force Distribution.

Все эти вспомогательные, но очень полезные дополнительные системы торможения называют сокращённо BA (BAS или EBS), DBC, CBC и EBD.

Системы безопасности

Чтобы повысить эффективность, после внедрения АБС начали использовать дополнительно тормозные системы EBS. На некоторых автомобилях её называют просто BA или BAS. От названия суть не меняется. Система направлена на снижение времени, необходимого для срабатывания тормозной системы. АБС позволяет максимально повысить эффективность торможения, если педаль тормоза выжата полностью.

Но она не активируется, когда педаль нажимают слабо. Усилитель срабатывает в определённых ситуациях и обеспечивает аварийное торможение, если водитель резко жмёт на педаль, но ему не удаётся приложить достаточное усилие. Система измеряет, как быстро и с каким приложенным усилием осуществляется нажатие. Если это нужно, автоматически и моментально увеличивается давление внутри системы торможения до максимальных значений.

Чтобы реализовать такую задумку, в пневмоусилители вмонтировали датчик скорости, который следит за перемещением штока, и электромагнитный тип привода. Когда от датчика поступает сигнал об очень быстром перемещении штока, то есть водитель резко надавить на педаль, включается электромагнит и повышает величину воздействующей на шток силы. Именно это позволяет снизить время торможения, порой спасая водителю жизнь.

Brake Assist System

Современные системы EBS способны запоминать особенности работы с тормозами водителя в обычном режиме, тем самым распознаётся экстренное торможение. Наличие EBS возможно только при условии присутствия на автомобиле ABS, поскольку они тесно взаимодействуют друг с другом.

Если говорить коротко, то EBS служит для додавливания педали тормоза, благодаря чему активируется система ABS. Но при этом EBS не способна распределять усилия на разные колёса. Сейчас ведутся активные разработки усовершенствованной версии этой тормозной системы, позволяющей совместно работать с круиз-контролем, распознавать автоматически препятствия впереди и помогать в сокращении тормозного пути.

Авторами этой системы торможения выступают инженеры немецкой компании BMW. Чем-то решение напоминает рассмотренный ранее BA. Но немецкая система помогает ускорять и дополнительно усиливать рост давления в приводе тормоза автомобиля при экстренной остановке. Даже если водитель прикладывает небольшое усилие, тормозной путь сокращается до минимума.

Автоматическая система считывает информацию о скорости повышения давления и усилии, которое прикладывает водитель. Так компьютер определяет, является ли ситуация опасной. Если да, незамедлительно давление возрастает до максимума, что и позволяет машине затормозить быстрее.

Дополнительно блок управлением считывает данные о скорости движения о степени износа тормозов. DBC основана на принципе гидравлического усиления, в отличие от конкурентов, где применяется вакуумный принцип. Практика показывает, что гидравлика способствует лучшему и более точно распределяемому тормозному усилию при экстренных и аварийных остановках автотранспорта. Электроника DBC напрямую связана с системой стабилизации и ABS.

Dynamic Brake Control

Эту систему разработали также баварские специалисты из BMW ещё в 1997 году. Когда авто начинает тормозить, задние колёса на машине разгружаются. Если это торможение происходит в повороте, заднюю ось может занести, поскольку растёт нагрузка на переднюю часть. CBC тесно связана с ABS. Их совместная работа позволяет предотвращать возможный снос задней оси, когда водитель начинает тормозить на входе в поворот.

Система оптимально распределяет тормозные усилия. В итоге занос не происходит, даже если водитель плотно и резко зажимает педаль тормоза. Сигналы, идущие от датчиков ABS, передаются на CBC. Также определяется скорость, с которой вращаются колёса. Эти данные позволяют регулировать рост тормозного усилия для каждого из цилиндров. Происходит это так, чтобы нарастание происходило интенсивнее на внешнем переднем колесе, если смотреть относительно поворота.

Предотвращение заносов авто

Такой принцип действия позволяет предотвращать заносы. На автомобилях система работает постоянно, но это остаётся незаметным для водителей. Хотя польза от подобного решения огромная.

Много говорится о системе распределения тормозных усилий EBD, но не каждый точно понимает, что это такое. EBD расшифровывается как электронная система распределения тормозных усилий. Из этого уже становится примерно понятно, какие функции и задачи выполняет система.

В автомобилях это решение используется для того, чтобы перераспределять усилия от тормозов между задними и передними колёсами. Плюс система распределения тормозного усилия, или просто EBD, помогает в грамотном автоматическом перенаправлении между левой и правой стороной транспортного средства, опираясь не текущие условия передвижения. ЕБД входит в состав традиционной системы ABS, оснащённой электронным управлением.

Когда машина движется прямолинейно и начинает тормозить, нагрузка перераспределяется. А именно нагружаются передние колёса, а задние наоборот разгружаются. Если у задних тормозов будет аналогичное усилие, как и впереди, значительно возрастёт вероятность возникновения блокировки на задних колёсах.

Используя специальные датчики скорости, электронный управляющий блок ABS определяет нужный момент и регулирует усилие. Во многом грамотное распределение зависит от того, какую массу имеет перевозимый груз и как он располагается.

Работа системы EBD

Также ЕБД оказывается полезной при торможении во время входа в повороты. Тогда происходит увеличение нагрузки на внешние колёса относительно поворота и разгрузка внутренних. Тем самым гарантируется защита от возможной блокировки.

ЕБД ориентируется на сигналы датчиков, установленных на колёсах, а также датчиков замедления или ускорения. Это позволяет системе определить, какие условия нужно создать для безопасного торможения. Комбинируя разные клапаны, давление рабочей жидкости перераспределяется. В итоге в каждом из колёс отмечается разный показатель давления.

Современные тормозные механизмы сохранили свой изначальный принцип работы. Но новые разработки сумели значительно повысить их эффективность. Теперь машина не просто может затормозить. Она делает это аккуратно, избегая блокировки колёс, заносов и прочих неприятностей, которые могут возникнуть при необходимости экстренно сбросить скорость.

Многие недооценивают значимость современных тормозных систем. Хотя именно они во многом помогают уверенно чувствовать себя на дорогах, входить в повороты на солидных скоростях и своевременно останавливаться перед выскочившим впереди препятствием.

Наличие всех ассистов тормозной системы постепенно становится обязательным условием при производстве и продаже новых автомобилей. И это абсолютно правильное решение, направленное на повышение безопасности на дорогах и снижение количества аварийных ситуаций или дорожно-транспортных происшествий.

Диагностика тормозной системы

Для диагностирования общей эффективности тормозной системы зачастую применяются специальные стенды.

прицеп с тормозной системой

Наибольшее распространение получили барабанные стенды, позволяющие определить усилие, создаваемое тормозной системой на каждом колесе и время срабатывания системы. Затем исходя из показаний, производится обслуживание и ремонт.

Народные методы диагностики тормозов

Одним из таких методов является замер тормозного пути. Именно этот метод положен в основу площадочного стенда. Суть метода сводиться к движению авто с определенной скоростью по ровной площадке с последующим экстренным торможением. После этого замеряется тормозной путь и на основе замеров и сравнения их с номинальным значением, указанным в тех. документации к авто, определяется эффективность тормозов.

К примеру, на ВАЗ 2109 в полностью загруженном состоянии тормозной путь на сухой ровной поверхности при скорости 80 км/ч должен составлять примерно 38 м. Значение меньше или таковое указывает на отличную работу тормозов, большее значение сигнализирует о проблемах в работе.

Недостатком этого метода является невозможность определения эффективности работы тормозов на каждом колесе и время срабатывания привода. Также на показания в значительной мере влияют дорожные условия при проведении диагностики (мокрая поверхность дороги или сухая и т.д.).

Видео: Как работают тормоза

Принцип работы тормозной системы автомобиля заключается в следующем:

  • движение педали управления механически передаётся на поршень главного гидроцилиндра;
  • движение поршня внутрь основного цилиндра приводит к увеличению давления жидкости в трубопроводах, подающих тормозную жидкость на исполнительные цилиндры тормоза каждого колеса;
  • возрастание давления в исполнительных цилиндрах приводит к перемещению поршня, который сжимает дисковые колодки или разжимает барабанные колодки на колесах;
  • под действием трения рабочей поверхности колодок о поверхность диска или барабана происходит затормаживание колёс.

Таким образом, давление ноги на педаль усиливается гидросистемой и действует на тормозные колодки колёс. При снятии ноги с педали гидравлическое давление в системе выравнивается, и поршень в основном гидроцилиндре занимает своё исходное положение.

Колодки, находящиеся под воздействием сил возвратных пружин, отпускают диски или барабаны колёс. Гидравлический привод применяется в качестве привода рабочей тормозной системы легковых и грузовых марок авто с небольшой грузоподъёмностью.

Источник https://amastercar.ru/articles/braking_system_4.shtml

Источник https://techautoport.ru/hodovaya-chast/tormoznaya-sistema/tormoznaya-sistema-avtomobilya.html

Источник https://www.dyrchik.ru/tormoznaya-sistema-avtomobilya/

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: